
Parallel Particle Advection and FTLE Computation
for Time-Varying Flow Fields

Boonthanome Nouanesengsy∗, Teng-Yok Lee∗, Kewei Lu∗, Han-Wei Shen∗and Tom Peterka†
∗Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210

Email: {nouanese,leeten,luke,hwshen}@cse.ohio-state.edu
† Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

Email: tpeterka@mcs.anl.gov

Abstract—Flow fields are an important product of scientific
simulations. Visualization and analysis of flow fields, despite
years of active research, still remains a vital area of study. One
popular vector field visualization technique is particle advection,
in which seeds are placed within a vector field, and their paths
are traced through the flow field. The pathlines of a time-
varying vector field can be used to compute a powerful analysis
tool called the Finite-Time Lyapunov Exponent (FTLE) field,
but no existing time-varying particle tracing algorithms scale
to the particle injection frequency required for high-resolution
FTLE analysis. Moreover, using parallelization to accelerate the
computation of FTLEs has not yet been studied. In this paper, a
framework to compute the massive number of pathlines necessary
for FTLE computation is presented. A new approach is explored,
in which processes are divided into groups, and are responsible
for mutually exclusive spans of time. This pipelining over time
intervals reduces overall idle time of processes and decreases
I/O overhead. An asynchronous communication model is also
implemented in order to further increase performance. Once
the advection phase is complete, the FTLE is also computed in
parallel. Our parallel FTLE framework is capable of advecting
hundreds of millions of particles at once, with performance
scaling up to tens of thousands of processes.

I. INTRODUCTION

Flow fields are a common and intensely studied class
of data in many scientific, medical, and engineering fields.
Scientists in such areas as combustion, climate modeling, and
aeronautics all require analysis and insight into vector fields.

One of the most common and intuitive methods to visualize
a vector field is to employ particle advection, where seeds are
placed within the vector field, and their paths are recorded over
a period of time. Given a set of particle seeds, their traces can
help scientists understand the flow by clearly illuminating flow
features, such as vortices and critical points. For time-varying
vector fields, the trace of a particle over time forms a pathline.
Various visualization and analysis algorithms require a large
number of pathlines, including interactive flow visualization
for large scale data [1][11], segments of flow fields [27], and
detection of flow features [24].

A recent vector field analysis technique requiring the com-
putation of pathlines is the Finite-Time Lyapunov Exponent
(FTLE) [15]. Given a space-time location in a time-varying
flow field, its FTLE value indicates how particles seeded
around this location diverge after a finite number of time steps.
Ever since Haller indicated that distinguished Lagrangian

structures can be computed from FTLE values [15], the vi-
sualization community has utilized FTLEs to assist in various
visualization tasks, including the placement of flowlines, [5]
streaksurfaces [12], and visualization and analysis of La-
grangian structures [19][26].
The computation of multiple FTLEs require densely placed

pathlines over both space and time. To compute one FTLE
field for the entire time-varying vector field, ideally a pathline
should be seeded from each spatial grid point at a certain
time. In order to gain more insight about how the vector field
changes over time, multiple FTLEs need to be computed, in
which the seeds are placed at different times for each FTLE.
Thus, advecting all of these particles is the main performance
bottleneck in FTLE computation. In this paper, we explore a
method for parallel computation of pathlines, with the main
application being the generation of FTLEs in parallel.
While several algorithms have been proposed to accelerate

the computation of FTLEs [4][13][19], the use of parallelism
to accelerate FTLE computation has not been mentioned.
Given the massive amount of particle advection required
for large scale data, the use of supercomputers is the only
reasonable choice to compute FTLEs within a practical time
frame.
In this paper, we present an efficient algorithm for parallel

time-varying particle advection, specifically for the require-
ments needed to compute multiple FTLEs for large scale
vector fields, which require large numbers of particles dis-
tributed over both space and time. The main contribution of
our algorithm, besides the conventional method of parallelizing
over space, is to parallelize over time, creating a pipelined
workflow structure, which allows particles in multiple time
intervals to be advected in parallel.
Our algorithm first divides the processes into groups, and

then assigns consecutive time intervals to the process groups
in round-robin order. Each process group can load their time
intervals as needed during run time, advect particles within
the assigned time interval, and asynchronously communicate
with other processes to send particles out for further advection.
Since each process group works in parallel, the I/O time
is overlapped with computation time, masking I/O latency,
reducing idle time, and increasing efficiency.
The main contribution of this paper is an efficient algorithm

to advect particles for large scale vector fields. While our main



focus is to efficiently compute FTLE fields, such an algorithm
can be used for other applications that also require a large
number of particle traces, such as the advection of streaklines
and streaksurfaces, or precomputation of pathlines for interac-
tive visualization. Likewise, other FTLE acceleration strategies
can be easily combined with our particle advection algorithm.

In Section II, we cover the mathematical background behind
particle advection and FTLE computation, and review related
work in those fields. In Section III we discuss an overview
of our parallel particle advection system. Section IV discusses
the pipelined parallel advection model in detail. Timing results
appear in Section V. In Section VI, we discuss limitations of
our framework, and outline future work. We conclude with
Section VII.

II. BACKGROUND

This section reviews the related mathematical background
for particle advection and FTLE computation. Applications
and recent advances for parallel particle advection are dis-
cussed. Related research about FTLEs is also overviewed,
including its applications, and progress into FTLE acceleration
techniques.

A. Particle Advection

Given a time-varying 3D flow field f : R3 × R → R3,
f(x, t) defines the velocity at a point x in R3 at time t. By
advecting a massless particle from x0 and t0 along the local
velocity f(x, t), the trace of this particle indicates how the
particle moves to other locations and time. The advection is
equivalent to computing an integral curve x(t) such that

x(t0) = x0 (1)

d

dt
x(t) = f(x(t), t) (2)

namely, the tangent along the integral curve at a location x(t)
and time t is equal to the vector velocity f(x, t) at the same
location and time. This integral curve is also called a pathline.
If we are interested in the flow field at a time instance t0, we
can fix the time to t0 when generating the integral curve. In
this case, the derived integral curve is called a streamline,
which can be expressed as d

dt
x(t) = f(x(t), t0).

Since it is often not possible to obtain a closed form
solution, numerical methods are used to solve Equation 2,
with vector data defined at integer time steps. Assuming that
the step size is h, the continuous time instance t can be
represented as 0, h, 2h, . . . , ih, . . . where x(ih) = x(t). One
of the most popular techniques to solve this equation is the
fourth-order Runge-Kutta method, which is referred to as RK4.
Given a point at location x(ih) and time step ih, the RK4
method computes the next particle position by looking up
four additional steps via Euler methods, and then combines
the four steps via Equation 3 as a more precise approximation
for x((i+ 1)h):

x((i+ 1)h) = x(ih) + 1

6
(k1 + 2k2 + 2k3 + k4) (3)

where

k1 = hf(x(ih), ih),

k2 = hf(x(ih) + 1

2
k1, ih+ 1

2
h),

k3 = hf(x(ih) + 1

2
k2, ih+ 1

2
h),

k4 = hf(x(ih) + k3, ih+ h).

In this paper, we employ a fourth and fifth order embedded
Runge-Kutta technique utilizing adaptive step size adjustment.
Since particle traces illustrate how the flow behaves across

different regions over time, particle advection plays a signifi-
cant role in flow visualization. A recent survey by McLoughlin
et al. [20] provides a comprehensive overview on this topic. In
addition to visualization, particle traces can be further analyzed
to understand flow fields. The user can query for particle
traces of interest by sketching [30] or explicit mathematical
expressions [27][28], or statistics from pathlines can be used
to detect flow features [18][24][29]. For these applications,
it is desirable to densely place seeds in the domain in order
to capture salient flow structures, thus requiring an efficient
algorithm to advect a large number of particles.
In order to efficiently advect particles for very large datasets,

several studies about generating streamlines for static flows on
supercomputers have been presented. Pugmire et al. conducted
a study using different strategies to parallelize streamline
computation [25]. The impact of recent hardware advances,
including multi-core architectures [7] and solid state disks [6],
were also studied. Several algorithms have been proposed to
distribute data blocks according to different criteria, including
using spectral clustering to segment flow fields into blocks
with minimal communication overhead between processes [8],
or using non-convex quadratic programming to balance the
distribution of block workloads [21].
In terms of generating pathlines in parallel, which is the

focus of this paper, existing algorithms might advect particles
within a limited space-time boundary [31], or load all time
steps before advection [17], which may not be practical for
extremely large data. For large scale time-varying data, having
the flexibility of only needing to load a subset of the data to
memory at once is important. The study conducted by Peterka
et al. [23] illustrates that, when generating pathlines over space
and time, the workload per process can vary because of the
differences among the local flow field. As a result, the blocks
of a time-varying vector field should be carefully distributed
to processes in order to achieve a load-balanced computation.

B. Finite-Time Lyapunov Exponent

Here we briefly overview the definition and computation
of the Finite-Time Lyapunov Exponent, or FTLE. Given a
location x and a time t in a flow field, its FTLE value, denoted
as φT

t (x), is a scalar that measures the separation between
particle traces which are seeded spatially close to x, begin



(a) (b)

Fig. 1. An example of a flow field and its corresponding FTLE field. (a).
A set of particle traces of the vector field. (b). The corresponding FTLE
field. The color blue denotes low FTLE values, while red denotes large FTLE
values. The center contains a red vertical area of high FTLE values because
particles seeded in that area will either flow to the left or right side, diverging
greatly.

at time t, and expire at time t + T . As introduced by Haller
[15], the separation can be measured as the Jacobian of the
flow map. For a flow field, its flow map FT

t (x) : R3 → R3

returns the location of a particle at time t + T , where the
particle was originally located at point x and time t. If the
seeding location is slightly shifted from x to x+#x at time
t, the Jacobian of FT

t (x), denoted as ∇FT
t (x), multiplied by

the offset #x indicates the coordinate offset at time t + T .
Therefore, the square root of the maximal eigenvalue λT

t (x)
of FT

t (x)!FT
t (x) indicates the maximum offset length if

the seeding location is shifted by one unit away. Based on
the maximum eigenvalue, the FTLE value is computed using
Equation 4:

φT
t (x) =

log
√

λT
t (x)

T
(4)

An example of an FTLE field is shown in Figure 1. Particle
traces are used to represent the input vector field, which
contains two distinct regions of flow. The boundary of the
two flow regions lies in the center, where FTLE values in
that region are also high. This is because given a set of seeds
placed in a small neighborhood in that region, particles will
flow to completely different regions of the flow field, leading
to high separation and high FTLE values.

The length of time particles are advected for an FTLE, T ,
depends on the application. In general, larger values of T
will result in FTLEs with more refined features. Normally,
the value of T will be less than the total number of timesteps
available, which means that multiple FTLEs can be computed
from one time-series dataset by using choosing different values
of the start time t. Generating a sequence of FTLE fields can
be useful for analyzing how flow features evolve over time.
The standard method of computing a sequence of FTLEs is
shown in Figure 2. For each FTLE, the length of time that
particles are advected is constant, with the starting time of each
FTLE offset by a fixed amount. This configuration results in
particles being seeded in several different time steps, a feature
which the pipelining technique described in Section IV takes
advantage of.

In order to compute the highest resolution FTLE possible,
a pathline should be seeded from each spatial grid point, the
cost of which can vary from extremely time-consuming to

Fig. 2. Multiple flow maps with overlapping time spans. Here, four flow
maps of time span T = 5 are shown. At the top, time intervals [i, i + 1],
i = 1 . . . 8, is assigned to 4 process groups (PG) in round-robin order.

totally impractical. Therefore, several algorithms have been
proposed to accelerate the computation of FTLEs. One strategy
is to approximate the flow map, which can be achieved by
either reducing the seeding density over the spatial domain
[12][13][26], or combining flow maps with shorter time spans
[4]. Compared to research on different FTLE approximation
schemes, the use of parallel computing for FTLEs is a rela-
tively new idea. One direction to efficiently compute FTLEs is
using GPUs or APUs (Accelerated Processing Units) [10][14],
which are confined to mid-size data sets because of limited
memory size on GPUs and workstations. For large scale data,
parallel computation of FTLEs will require the use of HPC
platforms, which has been not addressed to our knowledge.

III. SYSTEM OVERVIEW

Our parallel FTLE implementation is based on OSUFlow,
a parallel particle advection library [23]. For the nearest
neighbor communication required by particle advection, we
employ the DIY library [22], modified to implement our
parallel advection method described below. For all I/O tasks,
the BIL I/O library is utilized, which is designed to deliver
high I/O performance when loading blocks of data across
processes [16].

An overview of our parallel FTLE computation framework
is shown in Figure 3. The framework can be divided into
three main phases: initialization, particle advection, and FTLE
computation. The initialization phase begins by taking the
time-varying vector field, and decomposing it into blocks. All
blocks are 4D space-time blocks, with extents in three spatial
dimensions and the time dimension. To divide the data into
blocks, first the entire time extent of the data set is divided
into several different time windows. For each window of time,
the spatial region is decomposed into several blocks that all
share the same time extents as the time window. The set of all
blocks within a certain time window is referred to as a time

interval.

An assignment of data blocks to processes, also called a
partitioning, then needs to be calculated. The partitioning used
is a major factor in the load balance of the computation. Since
the amount of work for a block depends on the underlying
flow field directions, it is difficult to determine the amount of



load balance a partitioning will provide beforehand. Peterka
et al. [23] illustrated that a block-cyclic round-robin scheme
for time-varying pathline computation provided good results,
so we choose to use round-robin as our partitioning scheme.
Our results, detailed in Section V, support this claim.
Once those steps are completed, the seeds needed to com-

pute the flow maps required by FTLEs are placed in the correct
blocks. The parameters for the FTLE computation include the
number of FTLEs to calculate, the start time for the flow
map, how long particles are advected for each flow map,
and the amount of subsampling for each dimension. From all
these parameters, the locations of all necessary seeds can be
computed and placed in the correct block.
Once all initialization steps are complete, the next phase

is to compute the flow map by advecting pathlines. Earlier
implementations of parallel pathline computation involved
having all processes load one time interval at a time, advect
all active particles until all particles have terminated or left the
time interval, then load the next time interval, continuing ad-
vection [23]. This continues until all particles have terminated.
Since time intervals are loaded one at a time in chronological
order, we refer to this method as the time-serial method.
In this paper, we explore the use of loading multiple

time intervals at once, having particles advance through time
intervals in a pipelined manner. All processes are evenly split
into process groups. Process groups are responsible for loading
particular time intervals, with a round-robin scheme used to
assigned time intervals to process groups. When a process
group is done with its current time interval, it loads its next
assigned time interval. For each of its assigned time intervals,
a process group is responsible for advecting particles until
there are no more particles available for the time interval. As
particles are advected, they are passed on to the next time
interval if necessary. When particles become inactive, they
are sent to the process which holds the flow map entry from
which the particle originated from. We refer to this process as
the originating process. This continues until all particles have
been terminated or the last time interval has completed.
Since having multiple process groups advecting particles

through their own time interval effectively creates a pipelined
workflow, we refer to this technique as the pipeline method.
Figure 2 illustrates how time intervals are assigned to process
groups, and an example of how a mutli-FTLE computation
is processed by the pipeline method is shown in Figure 4.
Details of the pipelined advection method are further discussed
in Section IV.
Once all particles have become inactive and have been sent

back to their originating process, the advection phase is over,
and the rest of the steps needed to finish FTLE calculation,
such as flow map ghost cell exchange and Jacobian calculation,
can proceed. Since our method can support multiple FTLEs,
each individual FTLE field is assigned to a process group,
with the assignment again based on round-robin ordering.
Each FTLE is then decomposed into blocks over all processes
in the process group, with each process responsible for one
block of the FTLE. Since one of the remaining computation

Fig. 3. An overview of our parallel FTLE framework

steps involves computing the Jacobian, which is essentially a
gradient of the flow map, one ghost cell layer is needed for
each FTLE block. Thus, once the flow map is computed, ghost
cell values need to be exchanged among all processes in the
group. Once ghost cell values are exchanged, the rest of the
FTLE computation can be performed in parallel without any
further communication, following Equation 4. The resulting
FTLE field is then written to disk in parallel using MPI I/O.

IV. PIPELINED PARALLEL PARTICLE ADVECTION

A. Pipelined Particle Advection

In the time-serial approach, all processes work on the same
time interval before advancing to the next. One problem with
this time-serial method is that idle time from load imbalance
hurts performance. If a process does not have any particles to
advect, then it must sit idle until the time interval completes.
In the worst case, every process except one will be idle while
waiting for the last particle to finish. Another drawback to the
time-serial method is that if particles are seeded throughout
several time intervals, seeds that are not in the first time
interval must wait until the computation arrives at their time
interval.
One technique that can be used to overcome these draw-

backs is to process multiple time intervals concurrently. If
more than one time interval is available in memory at the
same time, particles that are advected in one time interval
can be immediately sent to the next time interval. The time
intervals form a pipeline, which particles must traverse through
chronologically as they advect through the flow field. When all
particles have moved past the earliest time interval currently
in memory, the next time interval that has not yet been
processed is then loaded. This concept is similar to Chiueh
and Ma’s implementation of a pipelined time-varying volume
renderer [9].
Pipelining across time intervals is accomplished by evenly

dividing the available processes into groups, and having time
intervals be processed by a group, instead of all available
processes. Figure 4 illustrates the pipelined particle advection
model. All process groups are assigned a certain number of
time intervals. The time intervals a certain process group
is responsible for will be processed in chronological order.
At the beginning of the advection phase, all process groups
will load their first time interval, and if any seeds lie within



PG1 

PG2 

PG3 

PG4 

FI/O I/O I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Time

[1,2]

[2,3]

[3,4]

[4,5]

[5,6]

[6,7]

[7,8]

[8,9]

[9,10]

[10,11]

[11,12]

[12,13]

T

1

F
T

2

F

F

T

3

T

4

Fig. 4. Pipelined particle advection. At the beginning of the program, each
process group (PG) loads its first assigned time interval, and begins to advect
particles if possible. Time intervals are denoted by brackets indicating their
start and end time. Each process group holds a time interval until all active
particles have passed through the time interval. Once a process group is done
with all its assigned time intervals, FTLEs assigned to that process group are
then computed.

them, immediately begin to advect these particles. Whenever
a particle is advected and reaches a block boundary, it is
sent to the process containing the block necessary to continue
advection. This process could be within the same process
group, or in the process group responsible for the next time
interval.
Using a pipelined model provides two advantages compared

to the time-serial method. The first advantage is that MPI
collective operations have smaller communicators. In our par-
allel advection model, synchronization is only required when
loading a new time interval from disk. Nevertheless, limiting
this synchronization to a smaller number of processes should
allow the pipelined model to scale better than the time-serial
method. The second advantage when using pipelining is that
the idle time of processes is reduced, since in a pipeline model
there is a greater chance for processes to have particles to
advect. The penalty for load imbalance within a time interval
is also less severe, because imbalance is contained to only the
processes in the group.

B. Asynchronous Particle Exchange

Throughout the advection phase, particles that need to
continue traveling through the flow field are sent and received
among processes, both within a process group and between
groups. In order to obtain the best performance, the commu-
nication involved in transferring particles is designed to be
as asynchronous as possible. Asynchronous communication
allows processes to overlap compute with communication.
A particle is active if it is still advecting through the flow

field. A particle becomes inactive if it exits the data domain,
the maximum number of steps is reached, or the particle has
reached its maximum time (t+ T in Equation 4).

Pseudocode of the algorithm used for computing particles in
one time interval is shown in Figure 5. When the time interval
begins, each process will begin advecting its local particles.
When a particle becomes inactive, it is enqueued in a list
of particles, called ReturnList, which holds particles that
need to be sent back to their originating process. Otherwise,
if a particle is still active, then it is enqueued in another
list, called ActiveList, which holds particles that need to
be sent to another process to continue advection. When the

number of particles in ActiveList exceeds a certain threshold,
Pthreshold, then all particles in the list are asynchronously sent
to the necessary process to continue advection. When all local
particles have been advected, the process checks if there are
any more incoming active particles. If any are found, they
are immediately advected. This continues until no more active
particles can be found. Once it is determined that no more
advection can be performed, other communication tasks are
done, such as sending out particles stored in ReturnList, and
receiving any inactive particles. All particle sends and receives
are done asynchronously.

C. Time Interval Completion

A necessary operation of the pipeline method is determining
when the task associated with a time interval is completed,
at which time it is safe for the process group to advance
to its next assigned time interval. A time interval is deemed
completed when there is no further possibility that any particle
will need to be advected within this time interval. In general,
a time interval can only meet this criterion when there are
currently no particles being advected within the time interval,
and the time interval is chronologically the earliest time
interval currently loaded in memory. If a time interval is not
chronologically the earliest, then that means time intervals
before it have not finished, and it is still possible for particles
to be sent to this time interval.

One naive approach to determine whether a time interval
is complete is to have all processes in the group count the
number of active particles it currently has, then synchronize
with a call to MPI Allreduce to let all processes in the group
know the current state. This can be periodically done until
the time interval is determined to be completed. Performance
will suffer, though, because this method will require constant
polling and repeated synchronizations. A better approach is
to use the method of Brunner et al. [2][3], along with some
modifications to account for concurrent process groups.

This method for determining when a time interval is com-
pleted involves all processes in the group sending messages
to a ‘root’ process, and vice versa. The root process will
determine when the time interval is finished, and will have
to inform every other process when it occurs. In order to
avoid having only one process in the group repeatedly check
and receive messages, which causes poor scaling and load
imbalance, the communication overhead is spread out over all
processes by using a binary-tree communication model. All
communication within this binary tree is asynchronous.

Two quantities are maintained while advecting particles.
The first number, called Ptotal, is the total number of active
particles the time interval needs to compute. The second
number, called Pdone, is the number of particles that have
either become inactive within this time interval, or have
advected and proceeded to the next time interval. The current
time interval is declared completed when Ptotal = Pdone. The
pseudocode describing how a time interval is determined to
be done is shown in Figure 5.



load blocks for a time interval
while time interval is not complete do
while there are local particles do
for each local particle do

advect particle until termination criteria is met
if particle is inactive then
enqueue particle in ReturnList
increment Pdone

else
enqueue particle in ActiveList
if particle is in next time interval then

increment Pnext

increment Pdone

end if
end if
if ActiveList > Pthreshold then
send particles in ActiveList to correct processes

end if
end for
send particles in ActiveList to correct processes
check for any incoming active particles

end while
check child nodes for messages containing Pdone

if child messages are found then
sum up received values with local Pdone

end if
send Pdone to parent
Pdone = 0
send particles in ReturnList to correct processes
check for any incoming inactive particles
check if time interval is complete

end while
send Pnext to ‘cousin’ process in next group

Fig. 5. The main loop for advecting particles in a time interval, including
logic to determine when a time interval has finished. For simplicity, the logic
to propagate Pnext to the root is omitted.

Two sources of particles make up Ptotal. The first source
is new particles seeded within this time interval. This occurs
when one or more FTLEs begin in this time interval. From the
FTLE computation parameters set by the user, this number can
be easily computed, and requires no communication.

The second source is particles which were active in the
previous time interval, and then were passed on to the current
time interval. As particles are advected, each process keeps
a count of the number of particles that were sent to the
next time interval, called Pnext. Whenever a time interval is
declared done, the value of Pnext needs to be communicated
to the process group responsible for the next time interval,
even if Pnext is zero. In order to declare the current time
interval completed and proceed to the next time interval, a
message from the previous time group containing Pnext must
be received.

Instead of having all processes in the group send their value
of Pnext to the same destination, each process will send their
value of Pnext to their ‘cousin’ process, which is simply the
process in the group responsible for the next time interval
which has the same local group rank as the source process.
In this way, each process in the group with the finished time
interval will send one message, and each process in the next
group will receive one message. Once the values of Pnext are
received, they are sent up the binary tree. A process will check
their children for values of Pnext, and when all values from its
children have been received, only then will the process send
its current total of Pnext to its parent. The root knows the
final value of Pnext has been obtained when it has received
a Pnext value from each of the root’s children processes, at
which time the correct value of Ptotal can be calculated.

The process of how Pdone is acquired will now be described.
Each process holds their own local value of Pdone. During
particle advection, whenever a particle becomes inactive or
is sent to the next time interval, the local value of Pdone is
incremented. Eventually, all local values of Pdone need to be
summed up the binary tree and sent to the root. When not
advecting particles, the process checks for any values of Pdone

from its children, then sends the current value of Pdone to its
parent. The local Pdone is then reset to zero. If any more
particles are advected after this point, the current value of
Pdone will eventually be sent again to the parent process.

As values of Pdone propagate up the tree, eventually the
values of Ptotal and Pdone will be equal at the root of the
binary tree. To ensure correctness, this equality check is not
performed until the values of Pnext are received from the
previous group, and the complete value of Pdone is obtained.
Once it is determined that the time interval is complete, the
root will send a done flag to all children, and the signal
eventually propagates to all processes in the group. Once a
process receives the done signal, it removes the blocks of the
current time interval from memory, and prepares to load the
next time interval assigned to the group.

V. RESULTS

We conducted several timing tests to study the performance
of our parallel FTLE method. A total of four time-varying
datasets were used. The Plume dataset is a simulation of the
thermal downflow plumes on the surface of the sun. It contains
29 timesteps, each having a resolution of 126 x 126 x 512,
which results in a total data size of 2.6 GB. The next dataset,
Ocean, is the output from an eddy resolving simulation, with
each timestep having a resolution of 3600 x 2400 x 40. With
36 timesteps total, the overall data size is 140 GB. The dataset
Isabel is a hurricane simulation with each timestep having a
resolution of 500 x 500 x 100. There are 48 total timesteps,
for a total size of 13.4 GB. The last test dataset used is called
Smhagos, and is a climate simulation over the Indian and
Pacific Ocean. The number of timesteps used was 50, each
with a resolution of 2699 x 599 x 27, for a total of 24 GB.
Images of the FTLEs produced from these datasets are shown
in Figure 6.



(a) Plume (b) Ocean (c) Isabel (d) Smhagos

Fig. 6. Images of FTLE fields produced from our test datasets. Blue indicates low FTLE values, while red indicates high FTLE values.

Over all timing tests, two operations dominated the running
time: reading data from disk and particle advection. FTLE cal-
culation steps performed after the flow map is complete, such
as exchanging flow map ghost cells, computing the Jacobian,
and writing the resulting FTLE field to disk, generally took
less than one percent of the total running time. Therefore, we
will not be listing those components in our results. Instead,
we focus on the time required to read data from disk, which
we refer to as I/O time, and advection time to generate the
flow maps. The reported I/O times are the average I/O read
time per process. Advection time includes communication
of particles, advection computation (Runge-Kutta integration),
other communication tasks, and possible idle time during the
advection phase. Because of the asynchronous nature of our
particle advection method, communication time and idle time
cannot be easily recorded separately. The reported advection
time is the average advection time per process. The total run
time of the program is also detailed.
In our implementation, the sampling distance can be set

separately for each spatial dimension. A sampling distance of
one indicates that a seed is placed in every grid point in that
dimension, while a value of two means every other grid point
is sampled. For compactness, the sampling distance will be
denoted as (i, j, k), where i, j, and k is the sampling distance
in the x, y, and z dimension, respectively.
All tests were conducted on Intrepid, an IBM Blue Gene/P

supercomputer situated at Argonne National Laboratory. In-
trepid contains 40,960 nodes, each holding 4 cores, and utilizes
the General Parallel File System (GPFS).

A. Varying Number of Blocks

An important parameter to consider when blocking data is
the total number of blocks to create. As shown by Peterka
et al. [23], when using round-robin partitioning, increasing
the number of blocks will more evenly distribute load over
all partitions. The downside to using more blocks is that as
block size decreases, the surface area to volume ratio increases,
resulting in more communication as particles will encounter
block boundaries earlier and more often.
To test this parameter, we conducted runs using all four of

our datasets, varying bp, the number of blocks per process. The
different values of bp tested were 1, 2, 4, and 8. The number
of process groups used was also varied with values of 1, 2, 4,
and 8. For all tests, 1024 processes were used, and each FTLE
computed spanned 6 timesteps. For Plume, 29 timesteps were
used, with 23 total FTLEs computed. The sampling distance

was set to (1, 1, 1), for a total of 186 million particles. The test
involving Ocean used 32 timesteps, 26 FTLEs, and a sampling
distance of (4, 4, 4). The total number of particles advected
was 162 million. For Isabel, 48 timesteps were used and 42
FTLEs were calculated. A total of 65.6 million particles were
produced with a sampling distance of (2, 2, 4). The Smhagos

test used 30 timesteps, 24 FTLEs, and a sampling distance of
(4, 4, 2), for a total of 62 million particles.
Figure 7 shows the results of our tests. In general, per-

formance increased as the number of blocks per process
increased. For Plume, bp = 4 results in the best performance,
while all other datasets prefer bp = 8. The graphs in Figure 7
also illustrates a general trend of decreasing total time as the
number of groups increase. This will be explored more in the
next section.

B. Varying Number of Process Groups

The effectiveness of process groups is further investigated
in Figure 8. Tests were conducted on Isabel and Ocean using
512, 1024, and 2048 processes, with the number of groups
varying for each process count. The blocks per process is set
to 8 for each run. The test parameters for Isabel are identical
to the one used in Section V-A, except for blocks per process.
For Ocean, 20 timesteps, 14 FTLEs, each with a time span of
6, are computed. Using a sampling distance of (4, 4, 4) results
in 75.6 million particles.
The tests using Isabel show significant improvement in total

time as the number of groups increases to 8. Both advection
time and I/O time decrease, with I/O decreasing by a larger
factor. When the number of groups becomes larger than 8,
the total time begins to increase. This is due to advection time
increasing, while on the other hand I/O time remains relatively
stable.
Ocean tests exhibit similar behavior, with total time always

decreasing as the number of groups is increased. Due to
memory constraints, no more than eight groups could be used.
For some processor counts, advection time increases going
from four to eight groups, but this is offset by decreases in
I/O time.
As shown most prominently in the Isabel tests, the advection

time begins to increase once the number of groups is greater
than a certain amount. This increase mainly stems from the
fact that as the number of groups increases, more processes
will stop participating in the last part of the advection phase.
Consider the point in the advection phase when the number
of time intervals which have not yet completed is less than



1 2 4 8

200

400

600

800

1000

Plume: Varying Blocks per Proc
Total Time

number of groups

to
ta

l t
im

e
 (

se
co

n
d
s)

 

 

bp = 1
bp = 2
bp = 4
bp = 8

(a)

1 2 4 8

200

400

600

800

1000

1200

1400

Ocean: Varying Blocks per Proc
Total Time

number of groups

to
ta

l t
im

e
 (

se
co

n
d
s)

 

 

bp = 1
bp = 2
bp = 4
bp = 8

(b)

1 2 4 8

200

400

600

800

1000

1200

1400

Isabel: Varying Blocks per Proc
Total Time

number of groups

to
ta

l t
im

e
 (

se
co

n
d
s)

 

 

bp = 1
bp = 2
bp = 4
bp = 8

(c)

1 2 4 8

200

400

600

800

1000

Smhagos: Varying Blocks per Proc
Total Time

number of groups

to
ta

l t
im

e
 (

se
co

n
d
s)

 

 

bp = 1
bp = 2
bp = 4
bp = 8

(d)

Fig. 7. The number of blocks per process is varied for all datasets. In general, a certain value of bp is preferred for each dataset. The Plume dataset performs
best with bp = 4, while bp = 8 performs best with all other datasets.

1 2 4 8 16 32

200

400

600

800

1000

1200

1400

Isabel: Varying Number of Groups
Total Time

number of groups

to
ta

l t
im

e
 (

se
co

n
d
s)

 

 

512
1024
2048

(a)

1 2 4 8

100

200

300

400

500

600

Ocean: Varying Number of Groups
Total Time

number of groups

to
ta

l t
im

e
 (

se
co

n
d
s)

 

 

1024
2048
4096

(b)

1 2 4 8 16 32

200

400

600

800

1000

1200

Isabel: Varying Number of Groups
Advection Time

number of groups

to
ta

l t
im

e
 (

se
co

n
d
s)

 

 

512
1024
2048

(c)

1 2 4 8

50

100

150

200

250

300

350

Ocean: Varying Number of Groups
Advection Time

number of groups

to
ta

l t
im

e
 (

se
co

n
d
s)

 

 

1024
2048
4096

(d)

1 2 4 8 16 32

50

100

150

200

250

300

350

Isabel: Varying Number of Groups
I/O Time

number of groups

to
ta

l t
im

e
 (

se
co

n
d
s)

 

 

512
1024
2048

(e)

1 2 4 8

50

100

150

200

250

300

350

400

Ocean: Varying Number of Groups
I/O Time

number of groups

to
ta

l t
im

e
 (

se
co

n
d
s)

 

 

1024
2048
4096

(f)

Fig. 8. Increasing number of groups are used for tests involving 512, 1024,
and 2048 processes. Left column: results from Isabel. Right column: results
from Ocean. For all process counts, the total time reduces when using up to
eight groups. Performance degrades when too many groups are used.

the number of process groups. This means that some groups
have processed all their assigned time intervals, and their
only remaining task is to compute FTLE fields assigned to
the group. Once FTLE computation is complete, though, they
may become idle while other process groups perform particle
advection. The number of processes not participating in the

last stages of the advection phase will increase as the number
of groups increase, thus advection time may suffer when a
large number of groups is used, due to a low utilization of
resources, as shown by Figure 8c.

Another notable impact as the number of groups is increased
is the decrease in I/O time. For the Isabel run using 1024
processes, the I/O time has a speedup factor of 9 when going
from one group to eight groups. I/O times decrease because as
the number of groups increases, the number of time intervals
assigned to any one group decreases. Therefore, the number of
file open and close operations that any single process performs
is reduced. Since the latency involved in file open and close is
constant per file, the overall I/O time is reduced, assuming that
the amount of bandwidth per process is constant. Furthermore,
increasing the number of groups decreases the length of the
pipeline in any one group, meaning there are fewer read stages.
Because of this, we see significant drops in overall I/O time.

Overall, these tests show that using pipelining improves both
advection time and I/O time. By using eight groups, total time
is improved by a speedup factor of 3 for the Isabel tests, and
1.5 for the Ocean runs.

C. Strong Scaling

Strong scaling tests consisted of multiple FTLEs computed
on each dataset using one and eight process groups, while
scaling the total number of processes up to 16 K. When
only one group is used, pipelining does not occur, and the
algorithm essentially becomes the time-serial method. This
way the scalability of the time-serial and pipelining method
can be directly compared.

For Plume, the same parameters that were utilized in Sec-
tion V-A are reused, with the exception being that a constant
4 blocks per process is set. The runs involving Ocean use
36 timesteps, with each FTLE spanning 6 timesteps, for a
total of 30 FTLEs. The sampling distance is set at (3, 3, 4),
which results in 288 million particles. The Isabel test uses
48 timesteps, and computes 42 FTLEs which each spans 6
timesteps, and uses 8 blocks per process. A sampling distance
of (2, 2, 2) is used, for a total of 131 million particles. The tests
using Smhagos uses 50 timesteps, and computes 44 FTLEs,
each having a time span of 6. The sampling distance is (4, 4,
2), and the total number of particles is 62 million.



512 1024 2048 4096 8192 16384
1

10

100

1000

10000

Plume: Strong Scaling Total Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(a)

1024 2048 4096 8192 16384
10

100

1000

10000

Ocean: Strong Scaling Total Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(b)

512 1024 2048 4096 8192 16384
10

100

1000

10000

Isabel: Strong Scaling Total Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(c)

512 1024 2048 4096 8192 16384
10

100

1000

10000

Smhagos: Strong Scaling Total Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(d)

512 1024 2048 4096 8192 16384
1

10

100

1000

10000

Plume: Strong Scaling Advection Time

number of processes

se
co

n
d
s

 

 

1 group
8 groups

(e)

1024 2048 4096 8192 16384
10

100

1000

Ocean: Strong Scaling Advection Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(f)

512 1024 2048 4096 8192 16384
10

100

1000

10000

Isabel: Strong Scaling Advection Time

number of processes

se
co

n
d
s

 

 

1 group
8 groups

(g)

512 1024 2048 4096 8192 16384
10

100

1000

10000

Smhagos: Strong Scaling Advection Time

number of processes

se
co

n
d
s

 

 

1 group
8 groups

(h)

512 1024 2048 4096 8192 16384
1

10

100

Plume: Strong Scaling I/O Time

number of processes

se
co

n
d
s

 

 

1 group
8 groups

(i)

1024 2048 4096 8192 16384
10

100

1000

Ocean: Strong Scaling I/O Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(j)

512 1024 2048 4096 8192 16384
10

100

1000

Isabel: Strong Scaling I/O Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(k)

512 1024 2048 4096 8192 16384
10

100

1000

Smhagos: Strong Scaling I/O Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(l)

Fig. 9. Strong scaling results. Each column is a different dataset. The top row, middle row, and bottom row contain results for total time, advection time,
and I/O time, respectively. Using pipelining with eight process groups consistently outperforms using only one group.

Results of the strong scaling tests are shown in Figure 9.
The pipelined method employing eight groups consistently
obtains higher performance versus the time-serial method. For
the Ocean, Isabel, and Smhagos datasets, the pipelined method
continues to scale up to 16 K processes, while the test using
one group failed to scale at the same rate. For the Plume

dataset, both methods ended up scaling similarly, although the
pipelined method still obtains better parallel efficiency. I/O
times with the pipelined method also scale much better, while
on the other hand I/O times from using one group always
increased when going from 8 K to 16 K processes.

D. Weak Scaling

Figure 10 shows the results obtained from a weak scaling
study of each dataset. Similar to strong scaling, each test was
performed using one group and eight groups. The number of
particles and number of processes were doubled for each run.
The number of particles is doubled by halving the current
sampling distance in one dimension.

For Plume, the sampling distance at 512 processes is (2, 4,
4), which results in a sampling distance of (1, 1, 1) at 16 K
processes. Tests for Ocean used a sampling distance of (16, 8,

8) at 1024 processes, which then becomes a sampling distance
of (4, 4, 4) at 16 K processes. The sampling distance for Isabel
at 512 process is (4, 8, 8), and at 16 K processes it grows to
(2, 2, 2). For Smhagos, the initial sampling distance at 512
processes is (16, 8, 8), and is (4, 4, 2) at 16 K processes.

Results from the weak scaling test generally confirm what
was previously indicated in the strong scaling tests. Using the
pipelined method with eight groups always produced better
results. Both Plume and Isabel tests show similar scaling for
both methods, while the scaling trend diverges for Ocean and
Smhagos, with pipelining scaling better. The total time of the
Ocean runs using the pipelined method actually decreases as
the processes count increases, mainly due to the fact these
runs are I/O bound.

VI. LIMITATIONS AND FUTURE WORK

The main limitation when using the pipeline method with
multiple process groups is that the memory requirements
increase as more groups are used. Since each group works on
a time interval, and all the data for the time interval is loaded
at once, there must be enough memory among the processes
in the group to hold all the data required.



512 1024 2048 4096 8192 16384
1

10

100

1000

Plume: Weak Scaling Total Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(a)

1024 2048 4096 8192 16384
10

100

1000

Ocean: Weak Scaling Total Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(b)

512 1024 2048 4096 8192 16384
10

100

1000

Isabel: Weak Scaling Total Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(c)

512 1024 2048 4096 8192 16384
10

100

1000

Smhagos: Weak Scaling Total Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(d)

512 1024 2048 4096 8192 16384
1

10

100

1000

Plume: Weak Scaling Advection Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(e)

1024 2048 4096 8192 16384
10

100

1000

Ocean: Weak Scaling Advection Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(f)

512 1024 2048 4096 8192 16384
10

100

1000

Isabel: Weak Scaling Advection Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(g)

512 1024 2048 4096 8192 16384
10

100

1000

Smhagos: Weak Scaling Advection Time

number of processes

se
co

n
d
s

 

 

1 group
8 groups

(h)

512 1024 2048 4096 8192 16384
1

10

100

Plume: Weak Scaling I/O Time

number of processes

se
co

n
d
s

 

 

1 group
8 groups

(i)

1024 2048 4096 8192 16384
10

100

1000

Ocean: Weak Scaling I/O Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(j)

512 1024 2048 4096 8192 16384
10

100

1000

Isabel: Weak Scaling I/O Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(k)

512 1024 2048 4096 8192 16384
10

100

1000

Smhagos: Weak Scaling I/O Time

number of processes

se
co

n
d

s

 

 

1 group
8 groups

(l)

Fig. 10. Weak scaling results. The top row, middle row, and bottom row contain results for total time, advection time, and I/O time, respectively. Each
column represents a different dataset. Using pipelining with eight process groups consistently outperforms using only one group.

Another limitation is that if there are no initial particles
seeded in a group’s first time interval, then processes must wait
for particles from earlier time intervals to arrive. In general,
the number of process groups should be less than or equal to
the total number of FTLEs to prevent this issue.

For future work, we plan on making the advection more
load balanced. Even though the pipelining method improves
advection time and reduces overall idle time, a more informed
partitioning could still enhance performance. Both preprocess-
ing [21] and dynamic partitioning are possible avenues of
research. Another potential improvement is to merge process
groups together when a process group has completed all of its
time intervals. In this way, better utilization of resources can
be achieved.

VII. CONCLUSION

In this paper, we demonstrated a pipelined model for parallel
particle advection. By separating processes into groups and
advecting particles over multiple time intervals, advection and
I/O performance are improved. Pipelining not only benefits
FTLE computation, but can also be applicable to pathlines,
streaklines, and streaksurfaces. Using this technique, we were

able to advect hundreds of millions of particles, while scaling
up to tens of thousands of processes.

ACKNOWLEDGMENT

We would like to thank the National Center for Atmospheric
Research for providing the datasets Isabel and Plume, Mathew
Maltrud of Los Alamos National Laboratory for the dataset
Ocean, and Samson Hagos and Ruby Leung of Pacific North-
west National Laboratory for providing the dataset Smhagos.
This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357. This work
was supported in part by NSF grant IIS-1017635, US De-
partment of Energy DOE-SC0005036, Battelle Contract No.
137365, Los Alamos National Laboratory Contract No. 69552-
001-08, and Department of Energy SciDAC grant DE-FC02-
06ER25779, program manager Lucy Nowell.

REFERENCES

[1] R. Bruckschen, F. Kuester, B. Hamann, and K. I. Joy. Real-time out-
of-core visualization of particle traces. In PVG ’01: Proceedings of the



IEEE Symposium on Parallel and Large-data Visualization and Graphics
2001, pages 45–50, 2001.

[2] T. A. Brunner and P. S. Brantley. An efficient, robust, domain-
decomposition algorithm for particle monte carlo. Journal of Computa-
tional Physics, 228(10):3882–3890, 2009.

[3] T. A. Brunner, T. J. Urbatsch, T. M. Evans, and N. A. Gentile.
Comparison of four parallel algorithms for domain decomposed implicit
monte carlo. Journal of Computational Physics, 212(2):527–539, 2006.

[4] S. L. Brunton and C. W. Rowley. Fast computation of finite-time
lyapunov exponent fields for unsteady flows. Chaos, 20(1):017503,
2010.

[5] K. Burger, P. Kondratieva, J. Kruger, and R. Westermann. Importance-
driven particle techniques for flow visualization. In PacificVis ’08:
Proceedings of the IEEE Pacific Visualization Symposium 2008, pages
71 –78, 2008.

[6] D. Camp, H. Childs, A. Chourasia, C. Garth, and K. Joy. Evaluating
the benefits of an extended memory hierarchy for parallel streamline
algorithms. In LDAV ’11: IEEE Symposium on Large Data Analysis
and Visualization 2011, pages 57 –64, 2011.

[7] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. Joy. Streamline inte-
gration using MPI-hybrid parallelism on large Multi-Core architecture.
IEEE Transactions on Visualization and Computer Graphics, 17:1702–
1713, 2011.

[8] L. Chen and I. Fujishiro. Optimizing parallel performance of streamline
visualization for large distributed flow datasets. In PacificVis ’08:
Proceedings of the IEEE Pacific Visualization Symposium 2008, pages
87–94, 2008.

[9] T.-C. Chiueh and K.-L. Ma. A parallel pipelined renderer for time-
varying volume data. In I-SPAN ’97: Proceedings of the Third Interna-
tional Symposium on Parallel Architectures, Algorithms, and Networks
1997, pages 9 –15, 1997.

[10] C. Conti, D. Rossinelli, and P. Koumoutsakos. Gpu and apu computa-
tions of finite time lyapunov exponent fields. Journal of Computational
Physics, 231(5):2229 – 2244, 2012.

[11] D. Ellsworth, B. Green, and P. Moran. Interactive terascale particle
visualization. In VIS ’04: Proceedings of the IEEE Conference on
Visualization 2004, pages 353–360, 2004.

[12] F. Ferstl, K. Burger, H. Theisel, and R. Westermann. Interactive
separating streak surfaces. IEEE Transactions on Visualization and
Computer Graphics, 16(6):1569–1577, 2010.

[13] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen. Efficient computation
and visualization of coherent structures in fluid flow applications. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1464 –
1471, 2007.

[14] C. Garth, G.-S. Li, X. Tricoche, C. D. Hansen, and H. Hagen. Vi-
sualization of coherent structures in transient 2d flows. In TopoInVis
’07: Proceedings of the Workshop on Topology-Based Methods in
Visualization 2007, pages 1–13, 2007.

[15] G. Haller. Distinguished material surfaces and coherent structures in
three-dimensional fluid flows. Physica D, 149(4):248–277, 2001.

[16] W. Kendall, M. Glatter, J. Huang, T. Peterka, R. Latham, and R. Ross.
Terascale data organization for discovering multivariate climatic trends.
In SC ’09: Proceedings of the ACM/IEEE Conference on Supercomput-
ing 2009, pages 15:1–15:12, 2009.

[17] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erickson.
Simplified parallel domain traversal. In SC ’11: Proceedings of the
ACM/IEEE Conference on Supercomputing 2011, pages 10:1–10:11,
2011.

[18] A. Lez, A. Zajic, K. Matkovic, A. Pobitzer, M. Mayer, and H. Hauser.
Interactive exploration and analysis of pathlines in flow data. In WSCG
’11: Proceedings of International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision 2011, pages 17–
24, 2011.

[19] D. Lipinski and K. Mohseni. A ridge tracking algorithm and error
estimate for efficient computation of lagrangian coherent structures.
Chaos, 20:017504, 2010.

[20] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen.
Over two decades of integration-based, geometric flow visualization.
Computer Graphics Forum, 29(6):1807–1829, 2010.

[21] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Load-balanced parallel
streamline generation on large scale vector fields. IEEE Transactions
on Visualization and Computer Graphics, 17(12):1785–1794, 2011.

[22] T. Peterka, R. Ross, W. Kendall, A. Gyulassy, V. Pascucci, H.-W. Shen,
T.-Y. Lee, and A. Chaudhuri. Scalable parallel building blocks for

custom data analysis. In LDAV ’11: IEEE Symposium on Large Data
Analysis and Visualization 2011, pages 105–112, 2011.

[23] T. Peterka, R. Ross, B. Nouanesengsey, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang. A study of parallel particle tracing for steady-
state and time-varying flow fields. In IPDPS ’11: Proceedings of IEEE
International Parallel & Distributed Processing Symposium 2011, pages
580–591, 2011.

[24] A. Pobitzer, A. Lez, K. Matkovic, and H. Hauser. A statistics-based
dimension reduction of the space of path line attributes for interactive
visual flow analysis. In PacificVis ’12: Proceedings of the IEEE Pacific
Visualization Symposium 2012, pages 113–120, 2012.

[25] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber. Scalable
computation of streamlines on very large datasets. In SC ’09: Pro-
ceedings of the ACM/IEEE Conference on Supercomputing 2009, pages
16:1–16:12, 2009.

[26] F. Sadlo, A. Rigazzi, and R. Peikert. Time-dependent visualization of
lagrangian coherent structures by grid advection. In Topological Methods
in Data Analysis and Visualization, pages 151–165, 2011.

[27] T. Salzbrunn, C. Garth, G. Scheuermann, and J. Meyer. Pathline
predicates and unsteady flow structures. Visual Computer, 24(12):1039–
1051, 2008.

[28] T. Salzbrunn and G. Scheuermann. Streamline predicates. IEEE
Transactions on Visualization and Computer Graphics, 12(6):1601 –
1612, 2006.

[29] K. Shi, H. Theisel, H. Hauser, T. Weinkauf, K. Matkovic, H.-C. Hege,
and H.-P. Seidel. Path line attributes – an information visualization
approach to analyzing the dynamic behavior of 3d time-dependent flow
fields. In TopoInVis ’09: Proceedings of the Workshop on Topology-
Based Methods in Visualization 2009, pages 75–88, 2009.

[30] J. Wei, C. Wang, H. Yu, and K.-L. Ma. A sketch-based interface for
classifying and visualizing vector fields. In PacificVis ’10: Proceedings
of the IEEE Pacific Visualization Symposium 2010, pages 129–136,
2010.

[31] H. Yu, C. Wang, and K. L. Ma. Parallel hierarchical visualization of large
time-varying 3D vector fields. In SC ’07: Proceedings of the ACM/IEEE
Conference on Supercomputing 2007, pages 24:1–24:12, 2007.


